Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco.

Identifieur interne : 000546 ( Main/Exploration ); précédent : 000545; suivant : 000547

Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco.

Auteurs : Zhijian T. Li [États-Unis] ; Sadanand A. Dhekney ; Dennis J. Gray

Source :

RBID : pubmed:21229312

Descripteurs français

English descriptors

Abstract

We report the development of a convenient plant-based reporter system to analyze promoters and facilitate selection of genetically engineered plants. The VvMybA1 gene of grapevine (Vitis vinifera L.) regulates the last metabolic step of anthocyanin biosynthesis and its ectopic expression leads to anthocyanin production in otherwise non-pigmented cells. To develop an anthocyanin-based quantitative reporter system, the VvMybA1 gene was isolated from V. vinifera 'Merlot' and placed under control of three promoters to test its ability to distinguish different activity levels. Promoters included a double enhanced CaMV35S (d35S) promoter, a double enhanced CsVMV (dCsVMV) promoter or a bi-directional dual promoter (BDDP), resulting in transformation vectors DAT, CAT and DEAT, respectively. These vectors were introduced into grapevine and tobacco via Agrobacterium-mediated transformation for transient and stable expression analysis. A linear relationship between the mean red brightness (MRB) and optical density (OD) values with a 0.99 regression coefficient was identified in a dilution series of anthocyanin, thus allowing the use of histogram data for non-destructive and real-time assessment of transcriptional activity. Results of histogram-based analysis of color images from transformed grapevine somatic embryos (SE) and various tissues of transgenic tobacco showed a consistent six to sevenfold promoter activity increase of DEAT over DAT. This expression increase was verified by spectroscopic measurement of anthocyanin concentrations in sepal tissue of transgenic tobacco plants. These results were congruent with previously findings of promoter activity derived from GUS fluorometric assay, thus demonstrating for the first time that the VvMybA1 gene could offer a simple, versatile and reliable plant-based alternative for quantitative promoter analysis in plants.

DOI: 10.1007/s11248-010-9482-6
PubMed: 21229312


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco.</title>
<author>
<name sortKey="Li, Zhijian T" sort="Li, Zhijian T" uniqKey="Li Z" first="Zhijian T" last="Li">Zhijian T. Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dhekney, Sadanand A" sort="Dhekney, Sadanand A" uniqKey="Dhekney S" first="Sadanand A" last="Dhekney">Sadanand A. Dhekney</name>
</author>
<author>
<name sortKey="Gray, Dennis J" sort="Gray, Dennis J" uniqKey="Gray D" first="Dennis J" last="Gray">Dennis J. Gray</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21229312</idno>
<idno type="pmid">21229312</idno>
<idno type="doi">10.1007/s11248-010-9482-6</idno>
<idno type="wicri:Area/Main/Corpus">000576</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000576</idno>
<idno type="wicri:Area/Main/Curation">000576</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000576</idno>
<idno type="wicri:Area/Main/Exploration">000576</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco.</title>
<author>
<name sortKey="Li, Zhijian T" sort="Li, Zhijian T" uniqKey="Li Z" first="Zhijian T" last="Li">Zhijian T. Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dhekney, Sadanand A" sort="Dhekney, Sadanand A" uniqKey="Dhekney S" first="Sadanand A" last="Dhekney">Sadanand A. Dhekney</name>
</author>
<author>
<name sortKey="Gray, Dennis J" sort="Gray, Dennis J" uniqKey="Gray D" first="Dennis J" last="Gray">Dennis J. Gray</name>
</author>
</analytic>
<series>
<title level="j">Transgenic research</title>
<idno type="eISSN">1573-9368</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (genetics)</term>
<term>Anthocyanins (biosynthesis)</term>
<term>Anthocyanins (genetics)</term>
<term>Fluorometry (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Genetic Vectors (MeSH)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Transcription Factors (genetics)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium (génétique)</term>
<term>Anthocyanes (biosynthèse)</term>
<term>Anthocyanes (génétique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Fluorimétrie (MeSH)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Tabac (génétique)</term>
<term>Vecteurs génétiques (MeSH)</term>
<term>Vitis (génétique)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Anthocyanins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Anthocyanes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>Anthocyanins</term>
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
<term>Transcription Factors</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium</term>
<term>Anthocyanes</term>
<term>Facteurs de transcription</term>
<term>Tabac</term>
<term>Vitis</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fluorometry</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Reporter</term>
<term>Genetic Vectors</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Fluorimétrie</term>
<term>Gènes rapporteurs</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Vecteurs génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report the development of a convenient plant-based reporter system to analyze promoters and facilitate selection of genetically engineered plants. The VvMybA1 gene of grapevine (Vitis vinifera L.) regulates the last metabolic step of anthocyanin biosynthesis and its ectopic expression leads to anthocyanin production in otherwise non-pigmented cells. To develop an anthocyanin-based quantitative reporter system, the VvMybA1 gene was isolated from V. vinifera 'Merlot' and placed under control of three promoters to test its ability to distinguish different activity levels. Promoters included a double enhanced CaMV35S (d35S) promoter, a double enhanced CsVMV (dCsVMV) promoter or a bi-directional dual promoter (BDDP), resulting in transformation vectors DAT, CAT and DEAT, respectively. These vectors were introduced into grapevine and tobacco via Agrobacterium-mediated transformation for transient and stable expression analysis. A linear relationship between the mean red brightness (MRB) and optical density (OD) values with a 0.99 regression coefficient was identified in a dilution series of anthocyanin, thus allowing the use of histogram data for non-destructive and real-time assessment of transcriptional activity. Results of histogram-based analysis of color images from transformed grapevine somatic embryos (SE) and various tissues of transgenic tobacco showed a consistent six to sevenfold promoter activity increase of DEAT over DAT. This expression increase was verified by spectroscopic measurement of anthocyanin concentrations in sepal tissue of transgenic tobacco plants. These results were congruent with previously findings of promoter activity derived from GUS fluorometric assay, thus demonstrating for the first time that the VvMybA1 gene could offer a simple, versatile and reliable plant-based alternative for quantitative promoter analysis in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21229312</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-9368</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Transgenic research</Title>
<ISOAbbreviation>Transgenic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco.</ArticleTitle>
<Pagination>
<MedlinePgn>1087-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11248-010-9482-6</ELocationID>
<Abstract>
<AbstractText>We report the development of a convenient plant-based reporter system to analyze promoters and facilitate selection of genetically engineered plants. The VvMybA1 gene of grapevine (Vitis vinifera L.) regulates the last metabolic step of anthocyanin biosynthesis and its ectopic expression leads to anthocyanin production in otherwise non-pigmented cells. To develop an anthocyanin-based quantitative reporter system, the VvMybA1 gene was isolated from V. vinifera 'Merlot' and placed under control of three promoters to test its ability to distinguish different activity levels. Promoters included a double enhanced CaMV35S (d35S) promoter, a double enhanced CsVMV (dCsVMV) promoter or a bi-directional dual promoter (BDDP), resulting in transformation vectors DAT, CAT and DEAT, respectively. These vectors were introduced into grapevine and tobacco via Agrobacterium-mediated transformation for transient and stable expression analysis. A linear relationship between the mean red brightness (MRB) and optical density (OD) values with a 0.99 regression coefficient was identified in a dilution series of anthocyanin, thus allowing the use of histogram data for non-destructive and real-time assessment of transcriptional activity. Results of histogram-based analysis of color images from transformed grapevine somatic embryos (SE) and various tissues of transgenic tobacco showed a consistent six to sevenfold promoter activity increase of DEAT over DAT. This expression increase was verified by spectroscopic measurement of anthocyanin concentrations in sepal tissue of transgenic tobacco plants. These results were congruent with previously findings of promoter activity derived from GUS fluorometric assay, thus demonstrating for the first time that the VvMybA1 gene could offer a simple, versatile and reliable plant-based alternative for quantitative promoter analysis in plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Zhijian T</ForeName>
<Initials>ZT</Initials>
<AffiliationInfo>
<Affiliation>Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dhekney</LastName>
<ForeName>Sadanand A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gray</LastName>
<ForeName>Dennis J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Transgenic Res</MedlineTA>
<NlmUniqueID>9209120</NlmUniqueID>
<ISSNLinking>0962-8819</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000872">Anthocyanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000872" MajorTopicYN="N">Anthocyanins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005470" MajorTopicYN="N">Fluorometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="Y">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="Y">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21229312</ArticleId>
<ArticleId IdType="doi">10.1007/s11248-010-9482-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):772-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2001 Apr;160(5):877-887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Sep;26(9):1501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Jan 26;247(4941):449-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17788612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:761-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 May 14;304(5673):982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15143274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1999 Sep 1;58(5):749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1071-1083</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2004 Apr;13(2):143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15198202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Jun;262(2):247-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10336605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Jul 22;8:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18647406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Nov;168(2):313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1995 Feb;6(1):50-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7894082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Apr;69(6):633-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19096760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2010 Apr;104(4):351-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2003 Jun;25(11):835-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12889790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2001 Oct;49(10 ):4924-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11600045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis. 2005 Dec 21;5(11):948-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Aug;131(16):3829-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289433</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dhekney, Sadanand A" sort="Dhekney, Sadanand A" uniqKey="Dhekney S" first="Sadanand A" last="Dhekney">Sadanand A. Dhekney</name>
<name sortKey="Gray, Dennis J" sort="Gray, Dennis J" uniqKey="Gray D" first="Dennis J" last="Gray">Dennis J. Gray</name>
</noCountry>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Li, Zhijian T" sort="Li, Zhijian T" uniqKey="Li Z" first="Zhijian T" last="Li">Zhijian T. Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000546 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000546 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21229312
   |texte=   Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21229312" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024